Lý thuyết phương trình đại số có lịch sử từ rất lâu đời
Đến thế kỷ VII, lý thuyết phương trình bậc nhất và bậc hai được các nhà toán học Ấn Độ phát triển, họ cho ra đời phương pháp giải phương trình bậc hai bằng cách bổ sung thành bình phương của một nhị thức. Sau đó, người Ấn Độ cũng sử dụng rộng rãi các số âm, số Ả Rập với cách viết theo vị trí của các chữ số.
Đến thế kỷ thứ XVI, các nhà toán học La Mã là Tartlia (1500 - 1557), Cardano (1501 - 1576) và nhà toán học Ferrari (1522 - 1565) đã giải được các phương trình bậc ba và bậc bốn.
Đầu thế kỷ XIX, nhà toán học người Na Uy Henrik Abel cho rằng không thể phương trình tổng quát bậc lớn hơn bốn bằng các phương toán học thông thường của đại số. Không lâu sau đó, nhà toán học người Pháp Évariste Galois đã hoàn tất công trình lý thuyết về phương trình đại số của loài người.
Bài viết chép trên wikipedia
Không có nhận xét nào:
Đăng nhận xét